Implicit time discretization for the mean curvature flow of mean convex sets
نویسندگان
چکیده
منابع مشابه
Crystalline mean curvature flow of convex sets
We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in R . This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, sa...
متن کاملSingularity Structure in Mean Curvature Flow of Mean Convex Sets
In this note we announce results on the mean curvature flow of mean convex sets in 3-dimensions. Loosely speaking, our results justify the naive picture of mean curvature flow where the only singularities are neck pinches, and components which collapse to asymptotically round spheres. In this note we announce results on the mean curvature flow of mean convex sets; all the statements below have ...
متن کاملImplicit time discretization of the mean curvature flow with a discontinuous forcing term
We consider an implicit time discretization for the motion of a hypersurface driven by its anisotropic mean curvature. We prove some convergence results of the scheme under very general assumptions on the forcing term, which include in particular the case of a typical path of the Brownian motion. We compare this limit with other available solutions, whenever they are defined. As a by-product of...
متن کاملThe Size of the Singular Set in Mean Curvature Flow of Mean-convex Sets
In this paper, we study the singularities that form when a hypersurface of positive mean curvature moves with a velocity that is equal at each point to the mean curvature of the surface at that point. It is most convenient to describe the results in terms of the level set flow (also called “biggest flow” [I2]) of Chen-Giga-Goto [CGG] and Evans-Spruck [ES]. Under the level set flow, any closed s...
متن کاملThe Nature of Singularities in Mean Curvature Flow of Mean-convex Sets
Let K be a compact subset of R, or, more generally, of an (n+1)-dimensional riemannian manifold. We suppose that K is mean-convex. If the boundary of K is smooth and connected, this means that the mean curvature of ∂K is everywhere nonnegative (with respect to the inward unit normal) and is not identically 0. More generally, it means that Ft(K) is contained in the interior of K for t > 0, where...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
سال: 2020
ISSN: 2036-2145,0391-173X
DOI: 10.2422/2036-2145.201810_003